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Abstract: This paper contains the different properties of wing-length with respect to N-equation and using those properties it has 

been possible to establish a series of polynomial functions in a systematic manner that can produce a square integer only for once 

or twice or not at all known as square-free polynomials. For the ease of apprehension and to avoid drawing frequent references from 

earlier publications of ‘IJSER’, the whole N-equation properties of wings-theory has once again been reviewed and relevant parts 

are being projected as a ready reference along with all new findings. An index marking the heading points for new findings and 

minor corrections/modifications with respect to earlier publication is also furnished at the end of article under ‘Reference’. 
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Introduction: 

 

In a mixed combination of odd-even integers the expression α2 ± β2 can be said as positive or negative wing 

where α, β are the two elements of a wing. If there is no common factor in between the elements i.e. (α, β) = 1 

then the wing is called a prime wing and if (α, β) > 1 it is a composite wing. A prime wing therefore, may 

indicate a prime number or a composite number both whereas a composite wing is always for a composite 

number. Difference of the elements is called wing length or elementary gap.  

Basically there exists two kinds of prime numbers, 1st kind and 2nd kind according as 4x – 1 form & 4x + 1 form 

respectively. 1st kind prime can’t be expressed as α2 + β2 whereas 2nd kind prime is always expressible as α2 + β2 

where obviously (α, β) = 1. Any wing of the form (2x)2 ± 1 can be said as positive or negative mono-wing. All 

other wings are general wings. Any odd composite integer is of 1st kind or 2nd kind according as it is 4x – 1 form 

or 4x + 1 form. If it is of 1st kind it must contain at least one 1st kind prime and sum of their all exponents must 

be odd. If it is of 2nd kind sum of exponents of all 1st kind prime must be even or zero i.e. no 1st kind prime is 

present & then it can be said as purely 2nd kind composite number. It is simply because of the fact that (4x + 1)n 

is always in the form of 4λ + 1 whatever may be the nature of exponent n. but (4x – 1)n is in the form of 4λ + 1 

when n is even and in the form of 4λ – 1 when n is odd. (4x + 1)(4y – 1) is also in the form of 4λ – 1.  

 
Some usual Notations:  

Here we shall deal with the positive integers only and hence, all the variables used here are of positive integers 

unless it is specially mentioned. Meaning of some usual notations & some new symbol are given below.  

 

1. (a, b): greatest common factor in between a & b 

2. a│b : a divides b 

3. a  b: a belongs to b & a ∉ b: a doesn’t belong to. 

4. Product symbol ∏(wi) =  w1w2w3…….wi 

5. Equality symbol E(wi) = w1 = w2 = w3 = …….. = wi  

6. ↑(N)x denotes the exponent of the prime factor x present in the number N. 

7. ‘I’ always denotes a positive integer where to distinguish even & odd Ie ,Io are used.  
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8. a ~ b means either a – b or b – a so that result > 0. 

9. {fi(x),.....}, iI, represents a set of functions & equals to {ai,…..}, a set of integers of functional values 

common to at least for two functions where {o} means empty set. 

10. w(x) generally denotes the functional form of wing length ( b – a) of a wing a2 + b2 (a < b) 

  
1.      Systematic arrangement of Pythagorean triplets  

1.1    Definition of a Natural Equation or simply N-equation:  

 
a2 + b2 = c2 where the elements a, b, c all are of positive integers is said to be a Natural Equation or simply N-

equation provided its comparable equation i.e. (α2 – β2)2 + (2αβ)2 = (α2 + β2)2 has the property that α, β must be 

of positive integers. (a, b, c) is said to be a Pythagorean composite triplet/set or prime triplet/set according as a 

common factor lies among a, b, c or not.  

Now, from the property (aμ)2 + (bμ)2 = (cμ)2 we can say that any prime triplet can produce infinitely many 

composite triplets (aμ, bμ, cμ). But our main concern is to deal with a Pythagorean prime triplet. 

Now, N-equation can be of three types: 

i)         (e1)2 + (e2)2 = (e3)2         ii)      (o1)2 + (o2)2 = (e)2            iii)       (e)2 + (o)2 = (o1)2     

where e & o denote even & odd integer respectively.  

Case i) cannot be accepted as it is a composite triplet.  

Case ii) cannot be accepted as (o1)2 + (o2)2 = (2x – 1)2 + (2y – 1)2 = 2(2x2 + 2y2 – 2x – 2y + 1) = 2(odd integer) nature 

and fails to form a square integer. 

Case iii) can be well accepted and this can be of following two kinds. 

 
1.2 N-equation of 1st kind and 2nd kind 

 
To maintain the ascending order i.e. a < b < c, 1st kind is defined as odd < even < odd  

 2αβ > α2 – β2  (α/β) < √2 + 1 and 2nd kind is just its reverse.  

From the comparable equation it is quite understood that α, β are the combination of even-odd integers. 

For 1st kind c – b = (α – β)2 = (Io)2 = k say, where k can be said as Natural constant. c – a = 2β2 i.e. 2(I)2 form. 

Similarly, for 2nd kind k = c – b = 2(I)2 & c – a = (Io)2 & here, even < odd < odd. 

 

1.3 N-equation of 1st kind in functional form 

 

Here, {b + (2y – 1)2 – 2x2}2 + b2 = {b + (2y – 1)2}2 where 2x2 is just greater than (2y – 1)2 by an integer value. 

 b2 – b.4x2 + 4x4 – 4x2(2y – 1)2 = 0 or, b = 2x2 ± 2x(2y – 1) or, b = 2x2 + 4xy – 2x, neglecting (-) sign                   

 a = 4y2 + 4xy – 4y – 2x + 1 & c = 4y2 + 2x2 + 4xy – 4y – 2x + 1 

 (4y2 + 4xy – 4y – 2x + 1)2 + (2x2 + 4xy – 2x)2 = (4y2 + 2x2 + 4xy – 4y – 2x + 1)2  

i.e. {f(x, y)}2 + {φ(x, y)}2 = {ψ(x, y)}2 for k = (2y – 1)2 

For k = 1, y = 1 & as 2x2 > (2y – 1)2, x ≥ 1  (2x + 1)2 + (2x2 + 2x)2 = (2x2 + 2x + 1)2 where x  I. 

For k = 9, y = 2  x ≥ 3  (6x + 9)2 + (2x2 + 6x)2 = (2x2 + 6x + 9)2 where x = 3, 4, 5, ……. 

For a particular value of k we can change the functional expression so as to start the variable with one.  

As ‘a’ is always linear & b, c are always quadratic, say for k = 9, a = Az + B & b = Cz2 + Dz + E. Obtain first three 

triplets by putting x = 3, 4, 5 & they are (27, 36, 45), (33, 56, 65) & (39, 80, 89). For z = 1, A + B = 27 & C + D + E = 

36; for z = 2, 2A + B = 33 & 4C + 2D + E = 56 and for z = 3,  

9C + 3D + E = 80. Solving them & considering variable x we get  

(6x + 21)2 + (2x2 + 14x + 20)2 = (2x2 + 14x + 29)2 where x  I. 

As the coefficient of x2 is always 2, we can obtain the same by considering first two triplets.  

i.e. a = Az + B, b = 2z2 + Cz + D where A + B = 27, C + D = 34 & 2A + B = 33, 2C + D = 48 

Similarly, for k = 25, 49, ……. we can obtain the functional form as given below. 

K = 1, (2x + 1)2 + (2x2 + 2x)2 = (2x2 + 2x + 1)2 where x  I with leading triplet 3, 4, 5 
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K = 9, (6x + 21)2 + (2x2 + 14x + 20)2 = (2x2 + 14x + 29)2 where x  I with leading triplet 27, 36, 45 

K = 25, (10x + 55)2 + (2x2 + 22x + 48)2 = (2x2 + 22x + 73)2 where x  I with leading triplet 65, 72, 97 

K = 49, (14x + 105)2 + (2x2 + 30x + 88)2 = (2x2 + 30x + 137)2, x  I with leading triplet 119, 120, 169 

………………………………………………………………………………………. 

 

1.4 N-equation of 2nd kind in functional form 

 

Here, k = 2y2 & (b + 2y2 – x2)2 + b2 = (b + 2y2)2 where x  Io so that x2 is just greater than 2y2 by an integer.  

 b2 – 2bx2 + (x2 – 4y2)x2 = 0 or, b = x2 ± x√(x2 – x2 + 4y2) = x2 + 2xy neglecting (-) sign. 

Accordingly, a = x2 + 2xy + 2y2 – x2 = 2y2 + 2xy & c = x2 + 2xy + 2y2   

 (2y2 + 2xy)2 + (x2 + 2xy)2 = (x2 + 2xy + 2y2)2 & replacing x by 2x – 1, 

{2y2 + 2y(2x – 1)}2 + {(2x – 1)2 + 2y(2x – 1)}2 = {(2x – 1)2 + 2y(2x – 1) + 2y2}2  

For k = 2, y = 1  (2x – 1)2 > 2.12 i.e. x ≥ 2 we have (4x)2 + (4x2 – 1)2 = (4x2 + 1)2 where x = 2, 3, 4, …. 

Here also we can modify the functional form to start with x from one by initial two triplets considering the fact 

that even element is linear and odd elements are quadratic with coefficient of x2 as 4. First four functional forms 

are given below. 

K = 2, (4x + 4)2 + (4x2 + 8x + 3)2 = (4x2 + 8x + 5)2 where x  I with leading triplet 8, 15, 17 

K = 8, (8x + 12)2 + (4x2 + 12x + 5)2 = (4x2 + 12x + 13)2 where x  I with leading triplet 20, 21, 29 

K = 18, (12x + 36)2 + (4x2 + 24x + 27)2 = (4x2 + 24x + 45)2 where x  I with leading triplet 48, 55, 73 

K = 32, (16x + 72)2 + (4x2 + 36x + 65)2 = (4x2 + 36x + 97)2 where x  I with leading triplet 88,105,137 

………………………………………………………………………………….. 

 

It is observed that some of the triplets are composite set and some are of prime set. It is simply because of the 

fact that if an odd integer μ is multiplied with the elements (a, b, c) of a triplet under k = Io2 or k = 2.I2 then the 

composite set (μa, μb, μc) must satisfy k = (μIo)2 or k = 2(μI)2    

Only the triplets received by k = 2n – 1 where n  I are prime sets.  

To establish the functional form of N-equation for a particular value of k we therefore, need the first two 

triplets which can be obtained by following way. 

Say, for a 1st kind N-equation k = 25 = 52.  

Now if the leading set is (a, b, c) then c = b + 25 & a = c – 2.42 as 2.42 is just greater than 52 i.e. a = b – 7  (b – 7)2 

+ b2 = (b + 25)2 or, b = 72  1st leading set is (65, 72, 97) 

Similarly for the 2nd set a = c – 2.52 [obviously, it will be a composite set] 

  (b – 25)2 + b2 = (b + 25)2 or, b = 100 2nd set is (75, 100, 125) 

 

Say, for a 2nd kind N-equation k = 18 = 2.32. Here, c = b + 18 & a = c – 52 = b – 7 

  (b – 7)2 + b2 = (b + 18)2 i.e. b = b = 55  a = 48, c = 73 and 1st leading set is (48, 55, 73) 

Similarly, for the 2nd set a = c – 72  (b – 31)2 + b2 = (b + 18)2 & b = 91  a = 60, c = 109  2nd set is (60, 91, 109)  

 

1.5  Natural equation in mixed zygote form 

 

In mixed zygote form, N-equation can be written as, 

1st kind: 

{(y + 2x – 1)2 – y2}2 + {2y(y + 2x – 1)}2 = {(y + 2x – 1)2 + y2}2      [as leading set] 

Or, [{f(x, y)}2 – {φ(y)}2]2 + [2f(x, y)φ(y)]2 = [{f(x, y)}2 + {φ(y)}2]2 

Where for a particular value of k, {f(x, y)} – {φ(y)} is constant 

2nd kind: 

{2x(x + y)}2 + {(x + y)2 – x2}2 = {(x + y)2 + x2}2   [as leading set] 

Or, [2f(x, y)φ(x)]2 + [{f(x, y)}2 – {φ(x)}2]2 = [{f(x, y)}2 + {φ(x)}2]2 

Where for a particular value of k {φ(x)} is constant.  
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1.5.1 Example Chart of 1st kind N-equation in mixed zygote form. 

 

For k = 1        (22 – 12)2 + (2.2.1)2 = (22 + 12)2 

                       (32 – 22)2 + (2.3.2)2 = (32 + 22)2 

                       (42 – 32)2 + (2.4.3)2 = (42 + 32)2 

                      …………………………………. 

 For k = 9,       (62 – 32)2 + (2.6.3)2 = (62 + 32)2 

                        (72 – 42)2 + (2.7.4)2 = (72 + 42)2 

                        (82 – 52)2 + (2.8.5)2 = (82 + 52)2 

                        ………………………………….   

 For k = 25,      (92 – 42)2 + (2.9.4)2 = (92 + 42)2 

                         (102 – 52)2 + (2.10.5)2 = (102 + 52)2 

                         (112 – 62)2 + (2.11.6)2 = (112 + 62)2 

                       ……………………………………. 

  

1.5.2 Example Chart of 2nd kind N-equation in mixed zygote form. 

 

For k = 2, (2.4.1)2 + (42 – 12)2 = (42 + 12)2             

  (2.6.1)2 + (62 – 12)2 = (62 + 12)2 

  (2.8.1)2 + (82 – 12)2 = (82 + 12)2   

  …………………………………. 

For k = 8, (2.5.2)2 + (52 – 22)2 = (52 + 22)2 

  (2.7.2)2 + (72 – 22)2 = (72 + 22)2 

  (2.9.2)2 + (92 – 22)2 = (92 + 22)2   

  …………………………………... 

For k = 18, (2.8.3)2 + (82 – 32)2 = (82 + 32)2 

  (2.10.3)2 + (102 – 32)2 = (102 + 32)2 

  (2.12.3)2 + (122 – 32)2 = (122 + 32)2 

  ……………………………………. 

Note: (2d1)2 + (d2)2 ≠ Io2 & v2 + 1 ≠ Io2 where d  Io & v  Ie 

 
1.6  Natural equation in odd zygote form 

Let us now introduce another form of N-equation known as ‘Odd zygote form’ 

We have c + b = d12 & c – b = d22 where b  Ie  c = (d12 + d22)/2 & b = (d12 – d22)/2 

 a = √(c2 – b2) = √{(c + b)(c – b) = d1d2  {(d12 – d22)/2}2 + (d1d2)2 = (d12 + d22)/2  

 

1.6.1 Example chart of 1st kind 

 

For k = 1, (1.3)2 + {(32 – 12)/2}2 = {(32 + 12)/2}2  

  (1.5)2 + {(52 – 12)/2}2 = {(52 + 12)/2}2  

   (1.7)2 + {(72 – 12)/2}2 = {(72 + 12)/2}2 

  ……………………………………… 

For k = 9, (3.9)2 + {(92 – 32)/2}2 = {(92 + 32)/2}2  

  (3.11)2 + {(112 – 32)/2}2 = {(112 + 32)/2}2  

   (3.13)2 + {(132 – 32)/2}2 = {(132 + 32)/2}2 

  ……………………………………… 

For k = 25, (5.13)2 + {(132 – 52)/2}2 = {(132 + 52)/2}2  

  (5.15)2 + {(152 – 52)/2}2 = {(152 + 52)/2}2  

   (5.17)2 + {(172 – 52)/2}2 = {(172 + 52)/2}2 

  ……………………………………… 
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1.6.2 Example chart of 2nd kind 

 

For k = 2, {(52 – 32)/2}2 + (5.3)2 = {(52 + 32)/2}2  

  {(72 – 52)/2}2 + (7.5)2 = {(72 + 52)/2}2  

  {(92 – 72)/2}2 + (9.7)2 = {(92 + 72)/2}2  

  …………………………………….. 

For k = 8, {(72 – 32)/2}2 + (7.3)2 = {(72 + 32)/2}2  

  {(92 – 52)/2}2 + (9.5)2 = {(92 + 52)/2}2  

  {(112 – 72)/2}2 + (11.7)2 = {(112 + 72)/2}2  

  ………………………………………… 

For k = 18, {(112 – 52)/2}2 + (11.5)2 = {(112 + 52)/2}2  

  {(132 – 72)/2}2 + (13.7)2 = {(132 + 72)/2}2  

  {(152 – 92)/2}2 + (15.9)2 = {(152 + 92)/2}2  

  …………………………………………. 

Note: Sum of squares of two odd integers d1, d2 is always in the form of 2d where d is a 2nd kind prime or 

purely 2nd kind composite when (d1, d2) = 1. For (d1, d2) > 1, d is a composite of 2nd kind nature or purely 2nd 

kind nature. 

 
2. Two important operations  

2.1 Ns-operation:  

Identity for the product of two positive wings resulting equality of two positive wings as shown below, can be 

said as Ns-operation. 

(α12 + β12)(α22 + β22) = (α1α2 ± β1β2)2 + (α1β2 ⼲ α2β1)2 

e.g. 65 = 5.13 = (22 + 1)(22 + 32) = (2.2 ± 1.3)2 + (2.3 ⼲ 2.1)2 = 72 + 42 = 12 + 82.  

2.2 Nd-operation: 

Identity for the product of two negative wings resulting equality of two negative wings as shown below, can be 

said as Nd-operation. 

(α12 – β12)(α22 – β22) = (α1α2 ± β1β2)2 + (α1β2 ± α2β1)2 

e.g. 35 = 5.7 = (32 – 22)(42 – 32) = (3.4 ± 2.3)2 – (3.3 ± 2.4)2 = 182 – 172 = 62 – 12 

 
3. How the elements of a N-equation a2 + b2 = c2 produce power beyond two. 

 

Here we consider ‘a’ as LH odd element, ‘b’ as LH even element & ‘c’ as RH odd element of the N-equation a2 + 

b2 = c2 whose comparable equation is (α2 – β2)2 + (2αβ)2 = (α2 + β2)2 where α, β can be said as mixed zygote 

elements & (α2 ± β2) are the mixed zygote expression/wing of c or b conjugate to each other. 

 
3.1 How the element ‘a’ produces power. 

 

‘a’ produces power from 2 to 3 by virtue of Nd-operation in between (α2 – β2) & (α2 – β2)2  

i.e. in between (α2 – β2) & {(α2 + β2)2 – (2αβ)2} & on multiplication we get, 

{(α3 + αβ2) ± (2αβ2)}2 – {(2α2β) ± (α2β + β3)}2  

i.e. (α3 + 3αβ2)2 – (3α2β + β3)2 or {α(α2 – β2)}2 – {β(α2 – β2)}2 where 2nd one can be neglected as it is a composite set. 

 (α2 – β2)3 = (α3 + 3αβ2)2 – (3α2β + β3)2  

By repeated multiplication of (α2 – β2) on both sides we get the general relation of ‘a’ in power form as  

(α2 – β2)n + {nc1αn – 1β + nc3αn – 3β3 + ……}2 = {αn + nc2αn – 2β2 + ……}2 where n  I. 

 

Note: for n  Io it will always produce a relation like a2n + 1 + c2 = b2 i.e. (Io)2n + 1 + (Io)2 = (Ie)2 form, provided zygote 

expression of ‘a’ is in the form of (Ie)2 – (Io)2 e.g. 33 + 132 = 142 where 3 = 22 – 12.   
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3.2 How the element ‘c’ produces power. 
      

‘c’ produces power from 2 to 3 by virtue of Ns-operation in between (α2 + β2) & (α2 + β2)2  

i.e. in between (α2 + β2) & {(α2 – β2)2 + (2αβ)2} & on multiplication we get, 

{(2α2β) ± (α2β – β3)}2 + {(α3 – αβ2) ⼲ (2αβ2)}2  

i.e. (3α2β – β3)2 + (α3 – 3αβ2)2 or {α(α2 + β2) }2 + {β(α2 + β2) }2 where 2nd one can be neglected as it is a composite 

set.  (α2 + β2)3 = (3α2β – β3)2 + (α3 – 3αβ2)2   

By repeated multiplication of (α2 + β2) on both sides we get the general relation of ‘c’ in power form as  

{αn – nc2αn – 2β2 + …..}2 + {nc1αn – 1β – nc3αn – 3β3 + ……}2 = (α2 + β2)n where n  I.          

   
 3.3 How the element ‘b’ produces power. 

 

Before we analyze the power characteristic of element b, it is felt necessary to establish the following 

fundamental theorems. 

For two odd integers x & y, 

1. If x, y  1st kind or 2nd kind then xy  2nd kind. 

2. If x, y  opposite kind then xy 1st kind. 

3. ↑(x + y)2 = 2 when x, y  same kind and > 2 when x, y  opposite kind. 

4. ↑(x – y)2 = 2 when x, y  opposite kind and > 2 when x, y  same kind. 

5.  In a product of two odd negative wings (c12 – a12)(c22 – a22) = (c1c2 + a1a2)2 – (c1a2 + c2a1)2 if both c 2nd 

kind & both a  same kind then ↑(c1c2 + a1a2)2 = 2 = ↑(c1a2 + c2a1)2  

 

Here, b2 is expressible in the form of c2 – a2 whereas b is expressible in the form of (d12 – d22)/2 where all 

elements are odd. So by Nd-operation we can’t receive a relation like b3 = c2 – a2 But for b4 i.e. b2.b2 & for b6 i.e. 

b4.b2 & b8 i.e. b6.b2 & so on, we can always have a relation like b2n = c2 – a2 

Hence, (any even integer)any odd integer cannot be a term of N-equation. It is under Nize-equation as per next 

theorem (Natural equation of irrational zygote elements) 

So it is observed that ‘a’ produces power by Nd-operation among mixed zygote expressions i.e. mixed with odd 

& even elements. 

‘b’ produces even power by Nd-operation among odd zygote expressions i.e. mixed with only odd elements. 
 ‘c’ produces power by Ns-operation among mixed zygote expressions. 

Any two of these three operations or all the three are not possible to be run simultaneously.  

So in N-equation only one element can raise its power beyond two. 

The general form of N-equation where even element ‘b’ is in power form by repeated applications of Nd-

operations over b2n – 2.b2 , n  I can be written as, 

b2n + (nc1cn – 1a + nc3cn – 3a3 + …..)2 = (cn + nc2cn – 2a2 + …….)2 which is a composite set with common factor 2n – 1  

 (bn/2n – 1 )2 + (d1)2 = (d2)2 where obviously d1 & d2 are odd.  

Say, b = 2mαp where α is odd.  {2n(m – 1) + 1.αpn}2 + (d1)2 = (d2)2, where GCF of n(m – 1) + 1 & pn > 1 so as to receive 

the even element in power form.  

N-equation therefore, produces following three types of relations in power form. 

± an + 1 + b2 = c2 , a2 + b2 = cn + 1 & a2 + b2n = c2  where n  I & (a, b, c) is a prime set. 

 

4. How two elements are found to be in power form beyond two. 

 

If the zygote elements are of irrational nature i.e. in the form of (p ± q√r), we have the N-equation renamed as 

N-equation of irrational zygote elements or simply Nize-equation.       

 {(p + q√r)2 – (p – q√r)2}2 + {2(p + q√r)(p – q√r)}2 = {(p + q√r)2 + (p – q√r)2}2   

Or, (4pq√r)2 + {2(p2 – q2r)}2 = {2(p2 + q2r)}2  {(p)2 – (q√r)2}2 + (2p.q√r)2 = {(p)2 + (q√r)2}2 
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Here also, like N-equation the RH term of Nize-equation can produce even power by virtue of Ns-operation in 

between the mother expression and self & odd power by same Ns-operation in between the mother expression 

and its irrational zygote expression.  

Similar rule is applicable for LH term of Nize-equation by virtue of Nd-operation. But Ns & Nd both operations 

can’t run simultaneously. Hence, elements under conjugate expressions α2 ± β2 can’t raise its power beyond 

two simultaneously. But after Ns or Nd operation, the 3rd irrational element can produce power beyond two due 

to presence of √r factor.  

Here, obviously (p, q) = (p, r) = 1 & if p  Ie, both q, r  Io & if p  Io; q, r can be any combination. 

  

Let us rewrite the N-equation in power form: 

(α2 – β2)n + {nc1αn – 1β + nc3αn – 3β3 + ……}2 = {αn + nc2αn – 2β2 + ……}2 ……… (A)       

{αn – nc2αn – 2β2 + …..}2 + {nc1αn – 1β – nc3αn – 3β3 + ……}2 = (α2 + β2)n  ………. (B) 

For Nize-equation where α is integer & β is irrational Eq. (A) can be written in two ways: 

(α2 – β2)n + {βf(α, β, n)}2 = {αg(α, β, n)}2 when n is odd ……. (A1) 

(α2 – β2)n + {αβf(α, β, n)}2 = {αg(α, β, n)}2 when n is even ……. (A2) 

 

The integer element i.e. 3rd one can’t produce power. If the irrational element i.e. 2nd one produces power,  

f(α, β, n) must be in the form of β2m in case of n is odd & in the form of (αβ)2m in case of n is even. 

Similarly, Eq-B can be written in two ways: 

{αg1(α, β, n)}2 + {βf1(α, β, n)}2 = (α2 + β2)n  when n is odd ………. (B1) 

{g1(α, β, n)}2 + {αβf1(α, β, n)}2 = (α2 + β2)n  when n is even ………. (B2) 

 

The integer element i.e. 1st one can’t produce power. If the irrational element i.e. 2nd one produces power, f1(α, 

β, n) must be in the form of β2m in case of n is odd & in the form of (αβ)2m in case of n is even. 

 

Examples in favor of Eq-(B1): 

 

For n = 3, 3α2 – β2 = βm   or, βm + β2 – 3α2 = 0 where obviously m is even & β is in the form of q√r (q, r  Io) and  

(α, q) = 1 = (α, r).  

We have (√3)4 + (√3)2 = 3.22 and hence, consider the equation {22 – (√3)2}2 + (2.2√3)2 = {22 + (√3)2}2  

i.e.12 + (4√3)2 = 72, Now by Ns-operation in between 72 & 7 i.e. in between {12+ (4√3)2} & {22 + (√3)2} we get,  

(8√3 ± √3)2 + (12 ⼲ 2)2 where one case is 35 + 102 = 73 

   

 Examples in favor of Eq-(B2): 

 

For n = 4, the irrational element is β.4(β2 – α2) where for α = 1 & β = √2, 4(β2 – α2) = 4 = (√2)4 = β4 Hence, consider 

the equation {(√2)2 – 12}2 + (2√2)2 = {(√2)2 + 12}2 or, 12 + (2√2)2 = 32. Now by Ns-operation in between {(2√2)2 + 12} & 

self we get (2√2 ± 2√2)2 + (8 ⼲ 1)2 = 32.32 or, 25 + 72 = 34  

Or, directly from Eq-(B) we get the same result. 

On the same logic for n= 2, we get 1 + 23 = 32.  

 

Note: As binomially expanded both the elements under Eq-(B) are sum of alternately (+) & (–), it will produce 

the relations of low value elements whereas Eq-(A) will produce relations of high value elements. 

The above three examples are the particular cases of a general theory. By above concept it is not possible to 

extract many more examples from Eqs-(A), (B) & (C) because of following reasons. 

 

For n is odd, βf(α, β, n) = β[nc1αn – 1 ± X.β2] = β.Y (say) form where the integer Y is free from α, β  

 βf(α, β, n) ≠ βλ/2 form where λ  Io  

Due to same reason when n is even  αβf(α, β, n) = αβ[nc1αn – 2 ± X.β2] = αβ.Y form where the integer Y is free 

from α, β &  αβf(α, β, n) ≠ (αβ)λ/2 form where λ  Io   

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 
ISSN 2229-5518  

139

IJSER © 2017 
http://www.ijser.org

IJSER



Only possibility to extract more examples from the said equations is to follow a general theory. 

Here, α  I & β  irrational (q√r form) where (α, q) = 1 = (α, r) 

When n is odd α  I, but for n is even α must be equal to in the form of pλ1, λ1 ≥ 3 or 0 & in both cases β is in the 

form of qλ2rλ3/2 where λ2 ≥ 3 or 0 & λ3  Io ≥ 3.  

 when nI0, b2 = {βf(α, β, n)}2 = q2λ2rλ3{f(α, qλ2, rλ3,  n)}2 = q2λ2rλ3.ω2λ4 (say, λ4  I ≥ 3) where (λ2, λ3, λ4) = λ & λ ≥ 3 

 b2 = b1s form. Similarly, when nIe, b2 = p2λ1q2λ2rλ3 ω2λ4 where same logic is applicable i.e. (λ1, λ2, λ3, λ4) = λ & λ 

≥ 3  

In view of the above, we can establish the following two conditions where two elements are in power form of a 

Nize-equation. 

 

1.      │nc1pn – 1 ± nc3pn – 3 q2λ1rλ2 + nc5pn – 5q4λ1r2λ2  ± ……..│ = ωλ3 where (λ1, λ2, λ3) ≥ 3 & n  Io    

2.         │nc1 p(n – 2)λ1 ± nc3p(n – 4)λ1 q2λ2rλ3 + nc5 p(n – 6)λ1 q4λ2r2λ3 ± ……│ = ωλ4 where (λ1, λ2, λ3, λ4) ≥ 3 & n  Ie 

[ Here, r ≠ 1 but p, q ≥ 1, n ≥ 3, λ2  Io in 1st case & λ3  Io in the 2nd case, (p, q) = 1 = (p, r)] 

 

Say, n = 3  │3p2 ± q2λ1rλ2│ = ω λ3, n = 5  5p4 ± 10p2 q2λ1rλ2 + q4λ1r2λ2  = ω λ3 & so on.    

Say, n = 4  │4p2λ1 ± 4 q2λ2rλ3│ = ωλ4, n = 6  6p4λ1 ± 20p2λ1q2λ2rλ3+ 6q4λ2r2λ3 = ωλ4 & so on.  

If the said condition is satisfied we can have the relations like an + bλ = c2 or a2 + bλ = cn, (n, λ ≥ 3)  

        

Examples in favor of Eq-(A1):  

 

For n = 3, consider the relation {212 – (2√2)2}2 + (2.21.2√2)2 = {212 + (2√2)2}2 i.e. 4332 + (84√2)2 = 4492 

Now, applying Nd operation in between 4492 – (84√2)2 & 212 – (2√2)2 we have, 

(449.21 ± 336)2 – {84.21√2 ± 449.2√2}2 = 4333 & considering (+) sign, 4333 + 2423 = 97652  

This can be directly obtained from (α2 – β2)3 + (3α2β + β3)2 = (α3 + 3α2β)2 where α = 21 & β = 2√2 

This type of Nize-relations are obtained from (a2x + 1 ± b2x + 1) = I2. 

We have, (833 + 613)/3 = 5162  {5162 – (61√61)2}2 + (2.516.61√61)2 = {5162 + (61√61)2}2   

By Ns-operation on {5162 + (61√61)2}2 & 5162 + (61√61)2 i.e. (39275)2 + (62952√61)2 & 5162 + (61√61)2 

We get 2139784922 + 4202293 = 4932373 

Again from {5162 – (83√83)2}2 + (2.516.83√83)2 = {5162 + (83√83)2}2 we get another relation like 

7477381802 + 3088433 = 8380433. 

 

Note: As Nd & Ns operations both cannot run simultaneously, exponent of one element must be restricted to 2 

& this element is the integer part i.e. (α3 + 3α2β) not (3α2β + β3) which is irrational part. If we assume that (α3 + 

3α2β) produces power then (3α2β + β3) becomes purely irrational i.e. a powerless term where exponent can be 

considered as 1 of an integer element which is neither N-eq. nor a Nize-eq. Hence, only irrational part can 

produce power beyond two for all cases. 

Computer generated some examples are given below. All can be explained in the same way. Against each 

example there must exist a conjugate pair of irrational zygote expression, positive & negative and by successive 

Ns or Nd operations we can get the desired relation. 

73 + 132 = 29;                            92623 + 153122832 = 1137;                                 177 + 762713 = 210639282;         

35 + 114 = 1222;                        438 + 962223 = 300429072;                                 338 + 15490342 = 156133;    

173 + 27 = 712;                          14143 + 22134592 = 657;   etc 

 
5.      Beal Equation & Fermat’s Last Theorem (FLT) 

 

ax + by = cz where x, y, z all greater than two, is known as Beal Equation & for a particular case when x = y = z it 

is called Fermat’s Last Theorem (FLT). 

Now it is quite obvious that if a, b, c are prime to each other a Beal equation or FLT cannot exist. If Beal 

equation exists there must be a common factor among a, b, c. 
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If we assume the existence of a Beal equation where (a, b, c) = 1, then particular two elements of a, b, c must be 

the zygote expressions conjugate to each other and by virtue of both Nd & Ns – simultaneous operations they 

are in power form which are quite impossible.      

Hence, Beal equation or FLT cannot exist for (a, b, c) = 1 

 
5.1 Theory behind the formation of Beal equation. 

    

Algebraic sum of any two numbers both of which are in power form beyond two, is always in the form of λαβ 

where α > 3 & λ ≥ 1 i.e. Am ± Bn = λαβ. Select a number p from 4, 5, 6, ……, α so that GCF of (p, α), (p – 1, m) & 

(p – 1, n) all are ≥ 3. If p exists then Beal equation will exist with a common multiplier βp – 1. 

As the consecutive numbers p & (p – 1) don’t have any common factor in between them, hence for any Beal 

equation ax + by = cz, (x, y, z) is a prime set i.e. no common factor lies among x, y, z 

In between any two there can be a common factor. This implies, all the powers cannot be even. 

As α ≤ min(m, n) when λ ≠ 1, it is quite obvious that to produce Beal equation m, n both must be composite & α 

may be composite or may be prime. For λ = 1, m & n both can be prime & in this case α must be even i.e. 

composite. 

Among all the bases a, b, c there must be a common factor without which a Beal equation can’t exist. 

 
5.2 Few examples for the existence of Am ± Bn = λαβ where α > 3 & λ ≥ 1 

 

5.2.1      We have 1 + 1 = 2 i.e. in the form of 1m + 1n = 1α.2 Multiply both sides by 2α –1 to get an example set of 

Beal equation 2α –1 + 2α –1 = 2α where α = 4, 5, 6, …… 

 

5.2.2 Say, there lies a common factor in between A & B i.e. A = aθ & B = bθ & m > n      

 Am ± Bn = θm – n.β Multiply both sides by βm – n – 1 to get a relation  

Am βm – n – 1 ± Bn βm – n – 1 = (βθ)m – n from where infinite examples of Beal equation can be extracted satisfying the 

conditions (m, m – n – 1) ≥ 3 & (n, m – n – 1) ≥ 3 

 

5.2.3 We have always Am ± Bn = 1α.β & choose α so that (m, α – 1) = x & (n, α – 1) = y where  

x, y > 2 to get the infinite examples of Beal equation ax + by = βα. 

 
5.2.4 Say, A, B, m, n all  Io for N = Am – Bn = (1 + e1)m – (1 + e2)n where ↑(e1)2 = p & ↑(e2)2 = q & p > q > 3. 

After binomial expansion we have N = e1(Io/) – e2(Io//)  ↑(N)2 = q for p ≠ q and > q for p = q. In both cases  

N = 2α.β form i.e.  Am – Bn = 2α.β where α > 3. This is also true for m, n both are even or combination of even & 

odd. But for m, n  Ie, p > q > 2 

For ↑(e1)x = p & ↑(e2)x = q & p > q > 3 where x is a common prime factor same is applicable to form a Beal eq. 

for any combination of A & B. But so far N = Am + Bn is concerned at least one of m, n must be odd.  

 

5.2.5 For any combination of A, B say (m, n) = pα where p  prime & α ≥ 4 

 N = Am – Bn = {(1 + x)p}λ1 – {(1 + y)}μ1 = {(1 + px1)}λ1 – {(1 + py1)}μ1 = {(1 + px1)p}λ2 – {(1 + py1)p}μ2  

= {(1 + p2x2)}λ2 – {(1 + p2y2)}μ2 = {(1 + p2x2)p}λ3 – {(1 + p2y2)p}μ3 = {(1 + p3x3)}λ3 – {(1 + p3y3)}μ3 = ……… 

Finally, N = (1 + pαu)λ – (1 + pαv)μ = pα.β form.  

It is also true for N = Am + Bn where m, n both cannot be even.    

A ± 1 & B ± 1 should be chosen in such a way so that in binomial expansion one is cancelled out. 

 
5.2.6 N = A2m + B2n fails to produce a Beal equation by virtue of any common factor in between  

(A ± 1, B ± 1) or (m, n). Here, N = 1α(2Io) form. It can produce a Beal equation by virtue of (2m, α – 1) ≥ 3 and 

(2n, α – 1) ≥ 3. Beal equation produced by considering the factor 1α in all cases , can be said as Auto-Beal 

equation. 
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6. Some important corollaries: 

6.1 For all prime numbers ‘P’ 

Digit of unit place of P Digit of 10th  place of P Nature of P Remarks 

1 or 9 Even 2nd kind prime(P2) ↑(P2 – 1 )2 > 1 

3 or 7 Odd 2nd kind prime(P2) ↑(P2 – 1 )2 > 1 

1 or 9 Odd 1st kind prime(P1) ↑(P1 – 1 )2 = 1 

3 or 7 Even 1st kind prime(P1) ↑(P1 – 1 )2 = 1 

   
6.2 Any 2nd kind prime irrespective of its exponent has a single positive prime wing and a single negative 

prime wing with consecutive elements. Elements of the wing are different for different values of exponent. All 

the composite numbers that are capable of forming the positive wings contain the prime factors of 2nd kind 

only. All 1st kind primes irrespective of its exponent have a single negative prime wing, elements of which are 

consecutive but go on changing as exponent changes. Hence, total number of prime wings (positive or 

negative) of a composite number depends upon the nos. of prime factors it contains, not the exponents of 

individual prime factor. If the number of prime factors is n total number of prime wings (positive or negative) 

produced is 2n – 1 with different wing lengths or elementary gap and where all the produced elements (2n nos.) 

are different. 

  n 

∏(Pini) = P1n1 P2n2 P3n3…….. n terms (all Pi  2nd kind prime)  
i = 1 

= ∏(ei2 + oi2) = (e12 + o12)(e22 + o22)(e32 + o32)………. (en2 + on2)  

= E(vi2 + di2) = (v12 + d12) = (v22 + d22) =  (v32 + d32) = ……… 2n – 1 prime wings. 

Similarly, for Pi  1st kind or 2nd kind prime & for negative prime wings  

∏(Pini) = ∏(ei2 ~ oi2) = (e12 ~ o12)(e22 ~ o22)(e32 ~ o32)………. (en2 ~ on2)  

= E(vi2 ~ di2) = (v12 ~ d12) = (v22 ~ d22) =  (v32 ~ d32) = ……… 2n – 1 prime wings.    

[vi ≠ vi + j & di ≠ di + j , e & v  Ie, o & d Io ] 

 

6.3 In a N-equation, RH odd element ± LH odd element = 2(integer)2  

& RH odd element ± LH even element = (odd integer)2    

 

6.4 All 2nd kind primes are distributed to satisfy ‘c’ of a N-equation a2 + b2 = c2 for all different values of ‘k’ 

whereas all 1st kind & 2nd kind primes are confined to k = 1 only to satisfy ‘a’ of a N-equation. 

 

6.5 If (a12 – b12)(a22 – b22) produces a relation (a32 – b32) = (a42 – b42), then (a12 + b12)(a22 + b22) will produce a 

relation (a32 + b42) = (a42 + b32).(a12 ± b12), (a22 ± b22) can be said as product wings and all the wings under equality 

can be said as produced wings. 

 

6.6 If (e12 + o12)(e22 + o22) produces a relation (e32 + o32) = (e42 + o42) where e, o denote even & odd respectively 

then Max(e3, e4) + Max(o3, o4) = (e1 + o1)(e2 + o2) i.e. a composite number &  

│Max(e3, e4) – Max(o3, o4)│ = │(e1 – o1)(e2 – o2)│ which may be prime or composite. 

 

6.7 The product & division rules of Ns-operation are as follows: 

(e12 + o12).(e22 + o22) = (│e1e2 ± o1o2│)2 + (│e1o2 ⼲ o1e2│)2 and 

(e12 + o12)/(e22 + o22) = {│e1e2 ± o1o2│/(e22 + o22)}2 + {│e1o2 ⼲ o1e2│/(e22 + o22)}2 consider only one wing which has 

integer elements. 

 

6.8 The product & division rules of Nd-operation are as follows: 

(e12 – o12).(e22 – o22) = (│e1e2 ± o1o2│)2 + (│e1o2 ± o1e2│)2 and 
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(e12 – o12)/(e22 – o22) = {│e1e2 ± o1o2│/(e22 – o22)}2 + {│e1o2 ± o1e2│/(e22 – o22)}2 consider only one wing which has 

integer elements. 

 

6.9 For both kind N-equations a2 + b2 = c2, c cannot be expressed as product of two algebraic linear factors. 

It can be easily proved by the functional form of c i.e. 2y2 + 2y(2x – 1) + (2x – 1)2 for 1st kind and y2 + 2xy + 2x2 for 

2nd kind where x is a fixed variable. In both cases D < 0 for the quadratic equation of y 

 

6.8          In a mixed combination of x, y; {xn + nc2xn – 2y2 + nc4xn – 4y4 + .…..} always represents a 2nd kind prime or a 

pure 2nd kind composite i.e. capable of producing a positive prime wing for (x, y) = 1  

 
6.10      F(x, y) = {xn ± nc2xn – 2y2 + nc4xn – 4y4 ± .…} & G(x, y) = {nc1xn – 1y ± nc3xn – 3y3 + nc5xn – 5y5 ± .…} both are 

polynomials of power-free integers for n > 2  F{f(x), g(y)} or G{f(x), g(y)} where f(x), g(y) are polynomials of 

integer coefficients, always represent a power-free integer.  

 

6.11 For k = 1 & 2 in a N-equation a2 + b2 = c2, the ordered pair (b ~ a, a + b) follows the sequence (α1, α2), 

(α2, α3), (α3, α4), (α4, α5),………….   

For k = 1, the functional form of a(x, y) = 2y(2x – 1) + (2x – 1)2 & b(x, y) = 2y(y + 2x – 1) where x is a fixed 

variable.  b(x, y) – a(x, y) = 2y2 – (2x – 1)2 & b + a = 2y2 + 4y(2x – 1) + (2x – 1)2  

Now, equating b(x, y + 1) – a(x, y + 1) = b(x, y) + a(x, y) we get (y + x)(x – 1) = 0  x = 1  k = 1 

 

Similarly, considering the functional form of 2nd kind N-equation we can get the same sequence for x = 1 i.e. k = 

2. Here, b(x, y) = (2x – 1)2 + 2y(2x – 1) & a(x, y) = 2y2 + 2y(2x – 1) where y is fixed variable and equating  

b(x + 1, y) – a(x + 1, y) = b(x, y) + a(x, y) we get 2(4x + y)(y – 1) = 0 

  y = 1 i.e. k = 2. 

For k = 1, 32 + 42 = 52, 52 + 122 = 132, 72 + 242 = 252, 92 + 402 = 412 ……… 

 (b – a, b + a) ≡ (1, 7), (7, 17), (17, 31), (31, 49) ……….    

For k = 2, 82 + 152 = 172, 122 + 352 = 372, 162 + 632 = 652, 202 + 992 = 1012 ……… 

 (b – a, b + a) ≡ (7, 23), (23, 47), (47, 79), (79, 119) ……….  

 
7.1 How a, b form consecutive integers of a N-equation a2 + b2 = c2 

   

If a is odd & b is even then from property of N-equation we can write c + a & c + b are of the form 2β2 & α2 

where α  Io  a ~ b is of the form α2 ~ 2β2  if a ~ b = 1 then α2 ~ 2β2 = 1 

 

Case I:       When α2 – 2β2 = 1. 

Say, α = (2x + 1)  β2 = 2x(x + 1) which is possible only for x = 1 i.e. 32 – 2.22 = 1 

It produces the only relation under 2nd kind N-equation i.e. 202 + 212 = 292 

 

Case II:       When 2β2 – α2 = 1. 

Here β2 = x2 + (x + 1)2  For k = (2x + 1)2 there must exist a relation x2 + (x + 1)2 = β2  

We have 32 + 42 = 52 where x = 3  next consecutive phenomenon will be observed for  

(2.3 + 1)2 < 50 i.e. 2.52 i.e. for k = 72.  

From (b – 1)2 + b2 = (b + 72)2 we get b = 120 that follows the relation 1192 + 1202 = 1692. 

Next consecutive phenomenon will be observed for (2.119 + 1)2 < 2.1692 i.e. for k = 2392.  

Again from (b – 1)2 + b2 = (b + 2392)2 we get b = 137904 that implies 1379032 + 1379042 = 1950252. 

Similarly, next ab-consecutive phenomenon will be observed as 1836480215992 + 1836480216002 = 2597175228492 

and so on. 

So, with the help of an ab-consecutive N-equation (or can be said as abc-eq.) we can produce next abc-equation 

and hence its existence is infinitely extended. 
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abc-equation always falls under 1st kind except 202 + 212 = 292 which is under 2nd kind. This is because of the fact 

that 2u2 – 1 = I2 has infinitely many solutions but 2u2 + 1 = I2 has the only solution i.e. 2.22 + 1 = 32. 

If abc-eq. falls under k = p2 then p2 + 1 must be in the form of 2u2.  

Obviously, abc-equation is the leading set of k = p2. 

 
7.2 For a N-equation a2 + b2 = c2 (a < b), c4 will produce an abc-equation having k = (b – a)2 if (b – a)2 is of 

the form 2u2 – 1. 

 

a2 + b2 = c2 may be of any kind and accordingly (b2 – a2)2 + (2ab)2 = c4 may represent any kind of N- equation but 

c4 will produce abc-equation when it is of 1st kind i.e. (b2 – a2) < (2ab) 

Let’s consider a N-eq. of 1st kind {b + (2x – 1)2 – 2y2}2 + b2 = {b + (2x – 1)2}2 = c2 where 2y2 > (2x – 1)2       

 [b2 – {b + (2x – 1)2 – 2y2}2]2 + [2b{b + (2x – 1)2 – 2y2}]2 = c4     

 2b{b + (2x – 1)2 – 2y2} – [b2 – {b + (2x – 1)2 – 2y2}2] = 1  

 2b2 – 4bp + p2 – 1 = 0 where p = 2y2 – (2x – 1)2 & D = 8(p2 +1) 

Obviously, if D is a square integer p2 i.e. (b – a)2 must be in the form of 2u2 – 1. 

Similarly, for 2nd kind N-eq. also we will get the same result i.e. (b – a)2 is in the form of 2u2 – 1. 

 
7.3 There exists only one relation under k = 1 where c4 produces abc-equation. 

 

Functional form of N-equation for k = 1 is (2x + 1)2 + {2x(x + 1)}2 = c2  

 [{2x(x + 1)}2 – (2x + 1)2]2 + {2.2x(x + 1)(2x + 1)}2 = c4 where  

{2.2x(x + 1)(2x + 1)} – [{2x(x + 1)}2 – (2x + 1)2] = 1 & on simplification x3 – 3x – 2 = 0 i.e. x = 2 

 52 + 122 = 132 produces abc-eq. on squaring i.e. (122 – 52)2 + (2.12.5)2 = 134 i.e. 1192 + 1202 = 134   

 

7.4 For a sequence of N-equation (ai)2 + (bi)2 = (ci)2 of a particular value of k, c4 will remain under 1st kind 

so long 2a2 – (b – a)2 > 0. If 2a2 – (b – a)2 = 1, c4 will produce abc-relation where c2 can be said as square root of 

abc-equation or simply √abc-equation. 

 

Let us consider a N-equation of any kind a2 + b2 = c2 where b > a 

 (b2 – a2)2 + (2ab)2 = c4 will remain under 1st kind when 2ab > (b2 – a2)2 i.e. (b/a)2 – 2(b/a) – 1 < 0 

 b/a  (0, √2 + 1). As b/a > 1, b/a  (1, √2 + 1)  b/a < √2 + 1  2a2 – (b – a)2 > 0 

Now, say 2a2 – (b – a)2 = 1 i.e. a2 + 2ab – b2 – 1 = 0 

Considering it as a quadratic equation of a, a = – b + √(2b2 + 1) where (2b2 + 1) is a square integer only for b = 2 

 for b = 2, a = 1 & √abc-equation is 12 + 22 = 5 against abc-eq. (22 – 12)2 + (2.1.2)2 = 52 i.e. 32 + 42 = 52. It cannot be 

continued as (2b2 + 1) fails to produce further square integer.  

But considering the quadratic equation with respect to b we have b = a + √(2a2 – 1) where there exists infinite 

nos. of square integers against (2a2 – 1). First one is obviously 5 & for a = 5, b = 12 i.e. 52 + 122 = 132 is the √abc-eq. 

of abc-eq. (122 – 52)2 + (2.5.12)2 = (132)2 i.e. 1192 + 1202 = 1692  

Next square integer of (2a2 – 1) is for a = 169 & for a = 169, b = 169 + 239 = 408 

 1692 + 4082 = 195025 is the √abc-eq. of abc-eq. (4082 – 1692)2 + (2.408.169)2 = 1950252  

i.e. 1379032 + 1379042 = 1950252.  

Next a = 195025 & b = 195025 + 275807 = 470832 

 1950252 + 4708322 = 259717522849 is the √abc-eq. of abc-eq. (4708322 – 1950252)2 + (2.470832.195025)2 = 

2597175228492 i.e. 1836480215992 + 1836480216002 = 2597175228492 & so on. 

Sequence of √abc-equations is given below: 

52 + {5 + √(2.52 – 1)}2 i.e. 52 + 122 = 132 = 169 

1692 + {169 + √(2.1692 – 1)}2 i.e. 1692 + 4082 = 195025  

1950252 + {195025 + √(2.1950252 – 1)}2 i.e. 1950252 + 4708322 = 259717522849 & so on. 

It is observed that every abc-relation has a definite √abc-relation which is obtained considering the sequence 

2a2 – (b – a)2 = 1 
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7.5 For a particular value of k of a N-equation there can exist only one √abc-relation. 

 

For a 1st kind N-equation a2 + b2 = c2 say, k = (2y – 1)2 = α2  

 a2 + b2 = (α2 + 2xα)2 + (2x2 + 2xα)2 in functional form where x is variable & α is fixed variable. 

 applying condition of abc-equation, 2(α2 + 2xα)2 – (2x2 – α2)2 = 1 

 4x4 – (12α2)x2 – (8α3)x – (α4 – 1) = 0 …….. (1) 

Similarly for 2nd kind N-eq. having k = 2α2 ,  a2 + b2 = {2α2 + 2α(2y – 1)}2 + {(2y – 1)2 + 2α(2y – 1)}2 = (2α2 + 2αx)2 + 

(x2 + 2αx)2 where α is fixed variable & x is variable.  

 Applying condition of abc-equation, 2(2α2 + 2αx)2 – (x2 – 2α2 )2 = 1 

 x4 – (4α2)x2 – (16α3)x – (4α4 – 1) = 0……… (2) 

Both the equations (1) & (2) confirm single positive root for a particular value of α. Hence, it is proved.  

e.g. for (1) it is quite understood that it is satisfied by α = 1 for which x3 – 3x – 2 = 0 i.e. x = 2 

 52 + 122 = 132 and squaring both sides we get 1192 + 1202 = 1692  

 
7.6 Equality of wing lengths with respect to N-equation. 

7.6.1 For opposite kind of N-equation. 

 

Let’s consider two opposite kind N-equations a2 + b2 = c2 (a < b < c) having k = (2α – 1)2 & k = 2β2 

Equating their wing lengths (b – a) we have, 2x2 – (2α – 1)2 = (2y – 1)2 – 2β2 for 2x2 > (2α – 1)2 & (2y – 1)2 > 2β2  

 2(x2 + β2) = (2α – 1)2 + (2y – 1)2      

Obviously, equality holds good for odd-even mixed combination of x & β. 

Such type of relation we receive while equating the mixed zygote form & odd zygote form of ‘c’ of a N-

equation (Ref: 1.5.2 & 1.6.1) 

Example: 5 = (32 + 12)/2 = 22 + 12 where one case is 2.22 – 12 = 32 – 2.12  

Comparing it with functional form we have, 2x2 – (2.1 – 1)2 = (2y + 1)2 – 2.12   

[it is (2y + 1) not (2y – 1) as because for y = 1 it must be greater than 2.12] 

 WL of xth relation (for k = 1) = WL of yth relation (for k = 2.12) 

i.e. wing-length of 2nd relation (for k = 1) = wing-length of 1st relation (for k = 2.12) 

 WL of (52 + 122 = 132) = WL of (82 + 152 = 172). In both cases WL is 7 

Again, 2.12 – 12 = 32 – 2.22  2x2 – 12 = (2y + 1)2 – 2.22  

 WL of 1st relation (for k = 1) = WL of 1st relation (for k = 2.22)  

 WL of (32 + 42) = WL of (202 + 212). In both cases it is 1. 

13 = (52 + 12)/2 = 32 + 22  2.32 – 12 = 52 – 2.22 i.e. 2x2 – 12 = (2y + 1)2 – 2.22 

 wl of 3rd relation of (k = 1) i.e. 72 + 242 = wl of 2nd relation of (k = 2.22) i.e. 282 + 452, in both cases it is 17. 

65 = 82 + 12 = 72 + 42 = (112 + 32)/2 = (92 + 72)/2 where one case is 2.72 – 32 = 112 – 2.42  

 2(x + 2)2 – 32 = (2y + 5)2 – 2.42  WL of 5th relation (of k = 32) = WL of 3rd relation (of k = 2.42) 

 WL of (512 + 1402 = 1492) = WL of (512 + 1402 = 1492). In both cases it is 89 & so on.   

 
7.6.2 For same kind of N-equation. 

 

Equality of wing lengths from 1st kind N-eq. means 2x2 – (2α – 1)2 = 2y2 – (2β – 1)2 where  

2x2 > (2α – 1)2 & 2y2 > (2β – 1)2  2(x2 – y2) = (2α – 1)2 – (2β – 1)2 & 2nd kind means (2x – 1)2 – 2α2 = (2y – 1)2 – 2β2 

where (2x – 1)2 > 2α2 & (2y – 1)2 > 2β2. Obviously equality holds good for x, y both are odd or both are even. 

When both are odd such type of relation we receive while equating the odd zygote form of even element b & 

2b of a N-equation.  

e.g. 4 = (32 – 12)/2  ½.8 = (32 – 12)/2  ½.(52 – 32)/2 = (32 – 12)/2  52 – 32 = 2(32 – 12) but it fails to be arranged as 

per 2x2 – (2α – 1)2 = 2y2 – (2β – 1)2 form.  52 – 2.32 = 32 – 2.12  

 (2x + 3)2 – 2.32 = (2y + 1)2 – 2.12  

 WL of 1st relation under (k = 2.32) = WL of 1st relation under (k = 2.12) 
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 WL of (482 + 552 = 732) = WL of (82 + 152 = 172). In both cases it is 7 

Similarly, 8 = (52 – 32)/2  = 16/2 = ½.(92 – 72)/2  2(52 – 32) = 92 – 72 which also fails to be arranged as per desired 

form 2x2 – (2α – 1)2 = 2y2 – (2β – 1)2 form.  92 – 2.52 = 72 – 2.32  (2x + 7)2 – 2.52 = (2y + 3)2 – 2.32  

 WL of 1st relation under (k = 2.52) = WL of 2nd relation under (k = 2.32)   

 WL of (1402 + 1712 = 2212) = WL of (602 + 912 = 1092). In both cases it is 31. 

 

So, equating the even element b of a N-equation for k = 1, with ½(2b) by odd-zygote form where obviously 2b 

satisfies N-eq. not for k = 1, we will always receive such type of failure cases. 

i.e. 2(d12 – d22) ≠ d32 – d42 when d2 = 1 for k = 1 in view of equal wing-length under 1st kind. 

 

So, equality of wing lengths for non-square integer (as per next theorem) in between k = d12 & k = d22 of a 1st 

kind N-equation hold good either for 2(2x)2 – d12 = 2(2y)2 – d22 …… (1) no. or,  

2(2x + 1)2 – d12 = 2(2y + 1)2 – d22 …. (2) no. for d1, d2 > 1 where WL = I02 shown in the next theorem  

Examples: 2.22 – 12 = 2.42 – 52 or, 2x2 – 12 = 2y2 – 52  

 WL of 2nd relation under (k = 12) = WL of 1st relation under (k = 52)   

 WL of (52 + 122 = 132) = WL of (552 + 622 = 972) = 7 

Again, 2.42 – 32 = 2.62 – 72 or, 2(x + 2)2 – 32 = 2(y + 4)2 – 72  

 WL of 2nd relation under (k = 32) = WL of 2nd relation under (k = 72)   

 WL of (332 + 562 = 652) = WL of (1332 + 1562 = 2052) = 23 & so on. 

   
7.7.3 Equality of wing-length which is a square integer always takes place in between k = 1 & k ≠ 1for 1st 

kind N-eq. 

 

All though there is no existence for eq. 2 in the previous discussion 7.7.2 (proof given later) but we can have the 

matching form in the following way. 

So far unit wing-length is concerned, it happens for k = 12, 72, 2392, 2758072,…….. as because  

1 = 2.12 – 1 = 2.52 – 72 = 2.1692 – 2392 = …… that help finding the sequence in equality of wing-length equals to a 

square integer. This nature of k can symbolically denoted by k  I0(1, n2)   

Functional form of equality for k = 1 & k = d2 can be written as, 

2x2 – 1 = 2(y + p)2 – d2 where 2(y + p)2 > d2, d  I0 > 1  

i.e. WL of xth relation for (k = 1) = WL for a particular relation of (k = d2) 

From 2nd relation i.e. 1 = 2.52 – 72 we can write 2.52 – 1 = 2.72 – 72 or, 2.52 – 1 = 2.(y + 4)2 – 72   

 WL of 5th relation (of k = 1) = WL of 3rd relation (of k = 72) 

 WL of (112 + 602 = 612) = WL of (1472 + 1962 = 2452) In both cases it is 49. 

From 3rd relation i.e. 1 = 2.1692 – 2392 we can write 2.1692 – 1 = 2.2392 – 2392 or, 2.1692 – 1 = 2.(y + 168)2 – 2392  

 WL of 169th relation (of k = 1) = WL of 71st relation (of k = 2392) 

Similarly from 4th relation i.e. 1 = 2.1950252 – 2758072 we have, 

 WL of 195025th relation (of k = 1) = WL of 80783rd relation (of k = 2758072) & so on. 

For any kind N-eq. a2 + b2 = c2, c2 is always in the form of c2 = (d12 + d22)/2  2c2 – d12 = 2d22 – d22  

or, 2c2 – d22 = 2d12 – d12  w(x) = d12, d22 for both k = d12 & k = d22 for some x = xi  

This type of k in pairs can be denoted by k  I0(di2, dj2) where di, dj > 1. 

Examples: 172 = (232 + 72)/2  2.172 – 72 = 2.232 – 232  2(x + 4)2 – 72 = 2(y + 16)2 – 232    

 WL of 13th relation of (k = 72) = WL of 7th relation of (k = 232) 

Whenever it is found that w(x) = d12, there must exist another w(x) = d22 so that both w(x) for k = d12 & k = d22 

meet at d12, d22 for some values of x. One is prime wing & other is composite wing.  

 
8. Some important theorems 

8.1 The relation 2x2 = d12 + d22 exists when x  I0 and has no existence when x  Ie for di > 1. 

 

2x2 = d12 + d22 = x2 – d12 = d22 – x2 & squaring both sides (x2 – d12)2 = d24 + x4 – 2(xd2)2  
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 2(xd2)2 – d24 = x4 – (x2 – d12)2 or, d22(2x2 – d22) = (x2)2 – (x2 – d12)2  

 d22(WL of k = d22) = (x2)2 – (x2 – d12)2  (x2)2 – (x2 – d12)2  Io2 Obviously, x2  I0 & x2  c2. 

 

8.2 2d2 = d12 – d22 has no existence for all di  Io  

 

If 2d2 = d12 – d22  d12 – 2d2 = d22 = 2d22 – d22  

 WL of (k = 2d2) = WL of (k = d22) i.e. equality of WL for opposite kind of N-equation.  

But as per 7.6.1, d & d2 both being odd it is not possible. 2d2 = d12 – d22 form cannot exist.  

 w(x) for 2nd kind N-eq. having k = 2Io2 is always square-free function. 

 w(f(x)) is also square-free polynomials for f(x) > 0 with integer coefficients. 

 

8.3 2d12 + 2d22 = d32 + d42 has no existence for all di  Io  

 

Here, 2d12 – d32 = d42 – 2d22  

 WL of (k = d32) = WL of (k = 2d22) i.e. equality of WL for opposite kind of N-equation. 

d1 & d2 both being odd it is not possible. 

 w(x) for k = 2Io2 & k for 1st kind are non-intersecting. 

 

8.4 2v12 + 2v22 = d12 + d22 & 2v2 – 2d2 = d12 – d22 have no existence for all vi  Ie & di  Io 

 

Here also same logic is applicable. 

 w(x) for k = 2Ie2 & for k = Io2 are always non-intersecting.   

& w(x) for k = 2Ie2 & for k = 2Io2 are always non-intersecting. 

 

 8.5 E(2di2 – dj2) has no existence where all di, dj  Io & > 1 

 

Let us consider a relation (d12 – d22)/(d32 – d42) = 2 & squaring both sides we have, 

d14 + d24 – 2(d1d2)2 = {2(d32 – d42)}2 = v2 (say)  d12(2d22 – d12) = (d22)2 – v2  

or, (2d22 – d12) = {(d22)2 – v2}/d12. As d2 ≠ d1, RHS must be a square integer Io2 so that RHS can be written as 2Io2 – 

Io2  d12│{(d22)2 – v2} and similarly, d22│{(d12)2 – v2} 

 (d22)2 – v2 = λd12 and (d12)2 – v2 = λd22  on subtracting λ = – (d12 + d22) which is absurd. 

Hence, 2d32 – d12 = 2d42 – d22 has no existence. But d12 – 2d32 = d22 – 2d42 exists. It indicates whenever there exists a 

relation like (d12 – d22)/(d32 – d42) = 2 it will produce equality of two wings under 2nd kind N-eq. only.  

Or, it is simple logic from 8.2, that 2d12 ≠ d22 – d32 & 2d42 ≠ d52 – d32  2d12 – 2d22 ≠ d22 – d52  

 

In view of the above we can establish the following important corollaries.  

 

Corollary 1: d2 = E(2xi2 – di2), i = 1, 2, 3, ….. exists only for d = 1. 

Corollary 2: In between any two I0(di2, dj2) where di, dj > 1, there cannot be any common element 

Corollary 3: w(x) for a 1st kind N-eq. produces square integers either only for once or twice or not at all.  

Corollary 4: w(2x) cannot produce any square integer. 

e.g. for k = 1, w(x) = 2x2 – 1  w(2x) = 8x2 – 1 is a square free function. In general, it is 8x2 – d2 

for k = 32, w(x) = 2x2 + 8x – 1  w(2x) = 8x2 + 16x – 1 is a square free function 

for k = 192, w(x) = 2(x + p)2 – 192 where p = 13 so that at x = 1, 2(x + p)2 is just greater than 192. 

x + p must be even. So replace x by 2x – 1 i.e. 2(2x + 12)2 – 361 i.e. w(2x) = 8x2 + 96x – 73 is a square free function. 

In first two examples w(x) is taken as per derivation under 1.3. but we can avoid derivation as per example 3 

where attention is to be given regarding replacement of x by 2x or 2x – 1.  

Corollary 5: k = d2 > 1 where k doesn’t belong to {di2, dj2} of I0(di2, dj2) can be denoted by I0(di2)      

 all w(x) for such k = d2  I0(di2) produces square integer only for once simply by  

d2 = (2.d2 – d2) = d2(2.12 – 1) e.g. for k = 32, w(x) = 2(32) – 32 = 2(x2) – 32.  
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So x = 1 i.e. leading set of k = 32 i.e. 272 + 362 = 452. 

For 2(x + p)2 – d2 if p = d – 1, it will be the leading set. 

 for k = 32, w(x + 1) is a square free function. 

Corollary 6: if w(x) is a square free quadratic function then it is obvious w(g(x)) where g(x) > 0 is a polynomial  

function with integer coefficients, will also be a square free polynomials of higher degree. 

Corollary 7: f(x, y) = {2(2y – 1)}2 + (2x – 1)2 ≠ Io2 as it fails to satisfy N-eq.  
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Conclusion: With further development of Wings-theory, I must take the privilege to mention the exceptional 

sequence of square integers produced with respect to my earlier theorem no. 10.5 published in ‘IJSER’ of vol-7, 

issue-8, Oct-edition, 2016. According to this theorem if N = x(x + 1) then N + u2 ≠ I2 where u is any factor of x or 

(x + 1) including unity.  N/u + u ≠ I2 when u  I2 But if u = x + 1 then by virtue of abc-equation (Ref. 7.1 of this 

article) following sequence of exceptional cases to produce square integers is found to be quite justified. 

Say, N = (52 – 1).52 as per 7.1,   (52 – 1).52 + (52)2 ≠ I2 i.e. (52 – 1) + 52 ≠ I2 as per 10.5 of earlier publication. But  

(52 – 1) + 52 i.e. 2.52 – 1 = 72. Similarly, for N = (1692 – 1).1692, N + (1692)2 i.e. (1692 – 1) + 1692 i.e. 2.1692 – 1 ≠ I2. But 

it is equal to 2392.  Similarly for the next sequence where N = (1950252 – 1).1950252, N + 1950252 i.e. 2.1950252 – 1 

≠ I2 but it is equal to 2758072 and so on.  if N = (2y + 1)(2y + 2) it never fall under that exceptional sequence as 

smaller part (2y + 1) is odd.  
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